LANDSCAPE CHANGE AND LAND-USE/LAND-COVER DYNAMICS IN RONDÔNIA, BRAZILIAN AMAZON.

Mateus Batistella

Submitted to the faculty of the University Graduate School in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the School of Public and Environmental Affairs, Indiana University

October 2001

Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

Emilio F. Moran, Ph.D.

Eduardo S. Brondízio, Ph.D.

Doctoral Committee

Paul W. Mausel, Ph.D.

J. C. Randolph, Ph.D.

Scott Robeson, Ph.D.

October 18, 2001

© 2001 Mateus Batistella ALL RIGHTS RESERVED To Claudia and my family

ACKNOWLEDGMENTS

It is difficult to summarize in a couple words how important some people were for my academic work during the four years of this research. The following list will always remain incomplete.

In the United States of America, I especially thank the contributions of:

- Emilio F. Moran, my advisor, a true facilitator during my stay in Bloomington. Emilio introduced me to the study of the human dimensions of environmental change and provided me with provocative questions that inspired my work
- Eduardo S. Brondízio, my friend and colleague, who taught me to work in several fronts and showed me how to integrate complementary techniques in human and landscape ecology
- J.C. Randolph, for his support and pragmatic view on vegetation ecology
- Paul Mausel, an expert in remote sensing and spectral analysis, for his insights during all the dissertation work
- Scott Robeson, who provided me with a critical approach in spatial analysis and statistics
- Elinor Ostrom, an amazing person and teacher, who opened my eyes to the importance of institutional analysis during my environmental studies
- Alejandro Flores, for quick and clean work with the vegetation database
- Amanda Evans, Patricia Strickland, and Teena Freeman, for administrative support
- Becky Snedegar and Karen Roberts, for their support in the Ph.D. program

- Bruce Boucek, for GIS support, friendship, and his critical view about life
- Fábio de Castro, for his assistance during fieldwork and insightful discussions on institutional aspects of environmental change within the study area
- Joanna Broderick and Melissa Strickland, for excellent proofreading work
- Tarkan Kacmaz, for computer support at ACT
- Vonnie Peischl, for her endless administrative support and for creating a pleasant work environment at ACT
- ACT Anthropological Center for Training and Research on Global Environmental Change, Indiana University, the place where I learned so many things in so little time
- CIPEC Center for the Study of Institutions, Population, and Environmental Change, Indiana University, which funded fieldwork in Rondônia through the National Science Foundation grant SBR-9521918
- NASA National Aeronautics and Space Administration, for funding complementary portions of the project through the LBA program and for a professional enhancement award

In Brazil, I am especially thankful for the contributions of:

- Evaristo Eduardo de Miranda, my academic advisor in EMBRAPA and omnipresent colleague in several endeavors
- Ademar Ribeiro Romeiro, Ivo Pierozzi Jr., and José Roberto Miranda, for their cooperation as heads of the EMBRAPA Satellite Monitoring

- Angelica Toniolo, Dino Visitação, and Joanna Tucker, for their assistance during fieldwork in Rondônia
- César Felício Prata, Maria Gorete Medeiros Santos, and Rosângela do Nascimento Pereira, for helping me with all the paperwork in EMBRAPA during the doctoral program
- Denise Alves Furtado and Elenara Chaves Edler de Almeida, for their diligent work at CAPES
- Eraldo Matricardi, who made me feel at home in Porto Velho, when looking for data about the study area
- Josimar, Athaíde, Manoel, Gilberto, and Sales, for their help during interviews and vegetation sampling in Machadinho d'Oeste and Vale do Anari
- Settlers, rubber tappers, loggers, and numerous other people who kindly contributed with this research, sharing their knowledge and experience at the Amazonian frontier
- CAPES Program for the Advancement of Education, for funding my studies at Indiana University
- EMBRAPA Brazilian Agricultural Research Corporation, particularly
 EMBRAPA Satellite Monitoring, where I have worked since 1989, for all the cooperation and support during the doctoral program
- A special thanks goes to my family in Brazil, which always makes me feel I am not alone and with whom I learned that 'the strength of a man is not measured, yet.'

• Last but not least, thanks to Claudia, my companion, soul mate, and friend, for her love, kindness, and character. Claudia has looked deeply into my being and has made me a better person. For the moments we have shared and the moments we will still enjoy together, I thank you.

PREFACE

When I was a kid I had a dream. I wanted to buy the entire Amazon, so I could preserve it. Time passed by and my dream did not come true. Neither was I able to buy the Amazon nor was it entirely preserved. On the contrary, I decided to pursue an academic career, and the money necessary to pay for that enormous region went to other hands. But I kept my interest in understanding the region and its paradoxes. As a researcher at the Brazilian Agricultural Research Corporation (EMBRAPA), I had numerous opportunities to visit and study the Amazon, delimiting the first Extractive Reserve decreed in the region (Alto Juruá, Acre), participating in the Land Zoning of the State of Tocantins, studying the ecological and spatial dynamics of grasshopper populations in Mato Grosso, and following the trajectory of production systems in northeastern Rondônia. More recently, at the Anthropological Center for Training and Research on Global Environmental Change, ACT-Indiana University, I had the opportunity to work with other Amazonian sites, particularly Tome Açu and Bragantina, both in Pará State.

This trajectory came along after a master thesis about the Fernando de Noronha Archipelago, a set of islands totaling 20 km² in northeastern Brazil. In that work, I used aerial photos, field surveys, GIS, and ecological cartography to characterize the area in terms of its biophysical aspects as well as alterations in ecological systems produced during its history of occupation. The Archipelago has since become a National Park, and the results of my work have been used to subsidize management plans within the islands.

During my thesis research, I was already working at EMBRAPA and involved with the projects mentioned above. From the small islands of Fernando de Noronha to the

ix

huge areas of Amazônia, my attention was always related to the spatial heterogeneity of landscapes, particularly when altered by human action. Moreover, I became very attracted to the importance of comparative studies and their application to policy making and development plans.

When I first met Professor Emilio Moran in 1996, he was teaching a course on human ecology at the Brazilian Institute for Space Research (INPE). By that time, I already had a dissertation project in mind, focused on comparative analysis of landscapes in Amazônia. Early discussions with him brought to surface the importance of maintaining control over some variables during a comparative research while searching for significant differences among the cases being compared. The settlements of Machadinho d'Oeste and Vale do Anari in the State of Rondônia were then selected for the study. They are adjacent to each other and about the same age, and have similar biophysical features within their landscapes and similar assets among colonists. However, the role of their different architectural and institutional designs in producing distinct landuse/land-cover outcomes and changes in landscape structure were as yet unveiled.

By the beginning of 1997, I was granted with a scholarship by CAPES (Program for the Advancement of Education) and approved for the doctoral program at Indiana University. The coursework as well as the research experience at ACT allowed me to integrate GIS, remote sensing, and spatial and landscape structure analysis to address the questions proposed by this dissertation. Moreover, institutional analysis on the human dimensions of landscape change provided complementary understanding of the colonization processes within the study area. Of course, none of these tasks would have

х

been possible without fieldwork, when gathering data was not just a part of the project, but an enlightening experience.

Even though I cannot realize my earlier dreams, I hope this dissertation contributes an impartial debate for the sake of the dreams of the Amazonian people.

ABSTRACT

Mateus Batistella

LANDSCAPE CHANGE AND LAND-USE/LAND-COVER DYNAMICS IN RONDÔNIA, BRAZILIAN AMAZON

Deforestation and colonization processes within the Brazilian Amazon have attracted substantial attention since the early 1970s. The phenomenon has been associated with issues related to global change, alteration of biogeochemical cycles, land-use/landcover (LULC) dynamics, and biodiversity losses. This dissertation focuses on an area of approximately 3,000 km² within the State of Rondônia in western Amazon. Two adjacent settlements of similar age, similar biophysical features, and similar assets among colonists were compared to assess the role of their different architectural and institutional designs in LULC dynamics and landscape change. Vale do Anari was planned as an orthogonal road network system. The majority of Rondônia was colonized following this scheme. Machadinho d'Oeste was designed with attention to topography in laying out the grid of farm properties and included communal reserves with right-of-use to local rubber tappers. Field research was undertaken in conjunction with the use of multi-temporal remotely sensed data (1988-1998), GIS integration, and landscape ecology methods. The results indicate that the communal reserves play an important role in maintaining lower levels of fragmentation in Machadinho, where 66% of forest cover remained in 1998 (after 15 years of colonization), in comparison with just 51% in Anari. Without the reserves, forest cover in Machadinho is also 51%. Although analyses at the property level showed that the area deforested per property per year is the same in both settlements for the entire time period of study, in Anari the rate of deforestation was lower before 1988

xii

and higher between 1994 and 1998. Also, pasture conversion is more significant in the fishbone scheme of Anari. Analyses of landscape structure confirmed that Machadinho is less fragmented, more complex, and more interspersed. The combination of privately based decisions for the properties and community-based decisions for the reserves clearly indicates that this architectural and institutional design can produce positive social and environmental outcomes. By comparing different settlement designs, this dissertation contributes to the rethinking of colonization strategies in the Amazon.

Emilio F. Moran, Ph.D.

Eduardo S. Brondízio, Ph.D.

Paul W. Mausel, Ph.D.

J. C. Randolph, Ph.D.

Scott Robeson, Ph.D.

TABLE OF CONTENTS

CHAPTER 2 - ENVIRONMENTAL AND CULTURAL SETTING: THE

OPPORTUNITY FOR A COMPARATIVE STUDY 10
2.1 - Amazônia: a land in search of its destiny 10
2.2 - The fate of Rondônia: rural development vs. landscape transformation 16
2.3 - Why Machadinho and Anari?
2.4 - The landscape in Machadinho and Anari: background data
2.4.1 - Geographic location, boundaries, and settlement architectures
2.4.2 - Climate
2.4.3 - Geology
2.4.4 - Geomorphology and hydrology 25
2.4.5 - Soils
2.4.6 - Vegetation
2.4.7 - Fauna
2.5 - People, time, and labor: the annual cycle of rural production systems in Machadinho
and Anari

COVER DYNAMICS ASSESSMENT IN THE AMAZON 60
3.1 - Disturbance and secondary succession in the Amazon: short review and
motivation
3.2 - Data collection
3.2.1 - Sampling strategy
3.2.2 - Database implementation
3.3 - Data analysis
3.3.1 - Descriptive comparisons through photos and vegetation profiles
3.3.2 - Variables analyzed70
3.3.3 - Integration of spectral data
3.3.4 - Statistical analysis
3.4 - Vegetation structure of secondary succession and forest in Machadinho and
Anari
3.4.1 - Phyto-physiognomy and general patterns of succession classes and forest76
3.4.2 - What makes a secondary succession stage?
3.4.3 - The spectral response to vegetation structure
3.5 - The role of vegetation structure and remote sensing for the study of secondary
succession dynamics in colonization areas of Amazônia
3.6 - Trends in research of tropical forest secondary succession

CHAPTER 3 - VEGETATION STRUCTURE AS AN INDICATOR FOR LAND-

CHAPTER 4 - LULC DYNAMICS: THE COLONIZATION IMPACT 131
4.1 - Geotechnologies and LULC dynamics in Amazônia: potentials and pitfalls131
4.2 - Methodological approach
4.2.1 - Multi-temporal analysis: what need have I for this?
4.2.2 - Pre-classification techniques
4.2.3 - LULC classification
4.2.4 - Post-classification procedures and GIS manipulation 144
4.3 - Land-Use/Land-Cover (LULC) dynamics 146
4.3.1 - Machadinho and Anari: general spatial trends in LULC 146
4.3.2 - Deforestation, production, and secondary succession: different processes 148
4.3.3 - Do communal forest reserves make a difference in Machadinho? 150
4.3.4 - Roads: the path for lot occupation 152
4.3.5 - Property-based analysis of LULC
4.4 - The colonization impact in Machadinho and Anari
4.4.1 - Methodological and operational issues 157
4.4.2 - Main findings and their meanings 159
4.4.3 - Trajectories of LULC and trends for the near future

CHAPTER 5 - LANDSCAPE CHANGE DESCRIBED BY SELECTED

METRICS	200
5.1 - Why study landscape change in Rondônia?	200
5.2 - Conceptual and methodological approach	206
5.3 - Data and methods	209

5.4 - Spatial pattern and process in Machadinho and Anari: metrics and trends	211
5.4.1 - Landscape: a broad comparison between the study sites	211
5.4.2 - Class: understanding LULC change through spatial metrics	214
5.4.3 - Patch: polygon-based descriptive statistics	218
5.5 - Landscape transformation in Machadinho and Anari	220
5.5.1 - Metrics and meanings	220
5.5.2 - Unresolved problems in spatial data analysis	233

CHAPTER 6 - BEYOND THE METRICS: HUMAN DIMENSIONS OF

LANDSCAPE CHANGE	273
6.1 - Understanding the human dimensions of landscape change	273
6.2 - The structure of rules and incentives affecting land-use in Machadinho and	
Anari	277
6.2.1 - Anari: a 'rapid settlement project'	280
6.2.2 - Machadinho: a better design for settlement projects in the Amazon?	282
6.3 - Actors and resources: the underlying processes of landscape change	285
6.3.1 - Implementation phase	286
6.3.2 - Consolidation phase	290
6.4 - Toward better interactions among actors in the frontier	295

CHAPTER 7 - CONCLUDING REMARKS	303
7.1 - This dissertation in the context of landscape ecology	303
7.2 - Hypotheses revisited	305
7.3 – Significance and implications of this study	309
7.4 - Opportunities for further studies	313

REFERENCES 3	319
--------------	-----

LIST OF FIGURES

Figure 1 - The Amazon Region seen through a mosaic of Landsat TM images from year
2000 (bands 3, 4, and 5)
Figure 2 - The State of Rondônia seen through a mosaic of Landsat TM images from year
2000 (bands 3, 4, and 5)
Figure 3 – Ecological-Economic Land Zoning of the State of Rondônia, 2 nd
Approximation (Rondônia 2000) 44
Figure 4 - Location of Machadinho d'Oeste and Vale do Anari in the State of Rondônia
(adapted from Rondônia 1999b) 45
Figure 5 - Landsat TM image from 1998 (bands 3, 4, and 5) showing Machadinho
d'Oeste and Vale do Anari distinct designs of colonization
Figure 6 - Machadinho d'Oeste and Vale do Anari - Property Grids, roads, rivers, and
extractive reserves
Figure 7 - Climatic diagram for the Jaru Biological Reserve, Rondônia, 1977 to 1996 50
Figure 8 - Morphostructural unities including the study area (adapted from Melo et
al.1978)
Figure 9 - Morphoclimatic unities including the study area (adapted from Melo et
al.1978)
Figure 10 - Machadinho d'Oeste and Vale do Anari - Elevation Classes and Rivers 53
Figure 11 - Diagram of nested squares for vegetation sampling in Machadinho d'Oeste
and Vale do Anari
and Vale do Anari

Figure 13 -	Integration of vegetation structure and spectral data analysis for Machadinho
	d'Oeste and Vale do Anari
Figure 14 -	Vegetation profile of an initial secondary succession stand in Machadinho
	d'Oeste and Vale do Anari
Figure 15 -	Vegetation profile of an intermediate secondary succession stand in
	Machadinho d'Oeste and Vale do Anari 100
Figure 16 -	Vegetation profile of an advanced secondary succession stand in Machadinho
	d'Oeste and Vale do Anari 102
Figure 17 -	Vegetation profile of a tropical open forest stand in Machadinho d'Oeste and
	Vale do Anari
Figure 18 -	Distribution of DBH of trees within vegetation classes sampled in
	Machadinho d'Oeste and Vale do Anari 106
Figure 19 -	Distribution of DBH of saplings within vegetation classes sampled in
	Machadinho d'Oeste and Vale do Anari 106
Figure 20 -	Distribution of basal area of trees within vegetation classes sampled in
	Machadinho d'Oeste and Vale do Anari 108
Figure 21 -	Distribution of basal area of saplings within vegetation classes sampled in
	Machadinho d'Oeste and Vale do Anari 108
Figure 22 -	Distribution of total basal area within vegetation classes sampled in
	Machadinho d'Oeste and Vale do Anari 109
Figure 23 -	Distribution of percentage tree contribution to total basal area within
	vegetation classes sampled in Machadinho d'Oeste and Vale do Anari 110

Figure 24 - Distribution of percentage sapling contribution to total basal area within
vegetation classes sampled in Machadinho d'Oeste and Vale do Anari 110
Figure 25 - Distribution of total height of trees within vegetation classes sampled in
Machadinho d'Oeste and Vale do Anari 111
Figure 26 - Distribution of total height of saplings within vegetation classes sampled in
Machadinho d'Oeste and Vale do Anari 111
Figure 27 - Distribution of density of trees within vegetation classes sampled in
Machadinho d'Oeste and Vale do Anari 112
Figure 28 - Distribution of density of saplings within vegetation classes sampled in
Machadinho d'Oeste and Vale do Anari 112
Figure 29 - Distribution of ratio between density of trees and saplings within vegetation
classes sampled in Machadinho d'Oeste and Vale do Anari 113
Figure 30 - Distribution of biomass of trees within vegetation classes sampled in
Machadinho d'Oeste and Vale do Anari 114
Figure 31 - Distribution of biomass of saplings within vegetation classes sampled in
Machadinho d'Oeste and Vale do Anari 114
Figure 32 - Distribution of total biomass within vegetation classes sampled in
Machadinho d'Oeste and Vale do Anari 115
Figure 33 - Spectral curves for each group of plot samples in Machadinho d'Oeste and
Vale do Anari (SS1, SS2, SS3, and forest) 116
Figure 34 - Distribution of mean reflectance in Landsat TM band 3 within vegetation

xxi

classes sampled in Machadinho d'Oeste and Vale do Anari...... 117

- Figure 38 Total height of trees and mean reflectance in Landsat TM band 3 within vegetation classes sampled in Machadinho d'Oeste and Vale do Anari.... 120
- Figure 39 Total height of trees and mean reflectance in Landsat TM band 4 within vegetation classes sampled in Machadinho d'Oeste and Vale do Anari..... 120
- Figure 40 Total height of trees and mean reflectance in Landsat TM band 5 within vegetation classes sampled in Machadinho d'Oeste and Vale do Anari.... 121
- Figure 42 Total basal area and mean reflectance in Landsat TM band 5 within vegetation classes sampled in Machadinho d'Oeste and Vale do Anari.... 122
- Figure 43 Density of trees and mean reflectance in Landsat TM band 5 within vegetation classes sampled in Machadinho d'Oeste and Vale do Anari.... 123
- Figure 45 Total height, DBH, and mean reflectance in Landsat TM band 4 within vegetation classes sampled in Machadinho d'Oeste and Vale do Anari.... 124

Figure 46 - Total height, DBH, and mean reflectance in Landsat TM band 5 within
vegetation classes sampled in Machadinho d'Oeste and Vale do Anari 124
Figure 47 - Methodological steps for the study of LULC dynamics in Machadinho
d'Oeste and Vale do Anari 169
Figure 48 - Pre-classification techniques used for the study of LULC dynamics in
Machadinho d'Oeste and Vale do Anari 170
Figure 49 - Spectral curves for LULC classes in Machadinho d'Oeste and Vale do Anari
(Landsat TM 1988) 172
Figure 50 - Spectral curves for LULC classes in Machadinho d'Oeste and Vale do Anari
(Landsat TM 1994) 173
Figure 51 - Spectral curves for LULC classes in Machadinho d'Oeste and Vale do Anari
(Landsat TM 1998) 174
Figure 52 - Percentage of forest and non-forest in Machadinho d'Oeste and Vale do Anari
in 1988, 1994, and 1998 177
Figure 53 - Percentage of non-forest classes in Machadinho d'Oeste and Vale do Anari in
1988, 1994, and 1998178
Figure 54 - Machadinho d'Oeste and Vale do Anari – Land Use / Land Cover
in 1998
Figure 55 - Pasture conversion in peri-urban areas of Machadinho d'Oeste 180
Figure 56 - Machadinho d'Oeste and Vale do Anari - Deforestation until 1998 181
Figure 57 - Percentages of classes of deforestation and forest in Machadinho d'Oeste and
Vale do Anari until 1998 182

Figure 58 - Machadinho d'Oeste and Vale do Anari - Production and secondary
succession until 1998 184
Figure 59 - Percentages of classes of production and secondary succession in
Machadinho d'Oeste and Vale do Anari until 1998 185
Figure 60 - Percentages of each forest reserve in relation to the total area of reserves in
Machadinho d'Oeste186
Figure 61 - Machadinho d'Oeste and Vale do Anari – Buffers around roads 188
Figure 62 - The route of deforestation around roads in Machadinho d'Oeste and Vale do
Anari until 1998 189
Figure 63 - Production and secondary succession around roads in Machadinho d'Oeste
and Vale do Anari until 1998 190
Figure 64 - LULC boxplots for properties of Machadinho d'Oeste in 1988 191
Figure 65 - LULC boxplots for properties of Machadinho d'Oeste in 1994 192
Figure 66 - LULC boxplots for properties of Machadinho d'Oeste in 1998 193
Figure 67 - LULC boxplots for properties of Vale do Anari in 1988 194
Figure 68 - LULC boxplots for properties of Vale do Anari in 1994 195
Figure 69 - LULC boxplots for properties of Vale do Anari in 1998 196
Figure 70 - Trajectories of Land Use/Land Cover in Machadinho d'Oeste and Vale do
Anari until 1998 198
Figure 71 - Patch area distribution for Machadinho d'Oeste including reserves in 1988,
1994, and 1998
Figure 72 - Patch area distribution for Machadinho d'Oeste excluding reserves in 1988,
1994, and 1998

Figure 73 - Patch area distribution for Vale do Anari in 1988, 1994, and 1998 251
Figure 74 - Patch perimeter distribution for Machadinho d'Oeste including reserves in
1988, 1994, and 1998
Figure 75 - Patch perimeter distribution for Machadinho d'Oeste excluding reserves in
1988, 1994, and 1998 253
Figure 76 - Patch perimeter distribution for Vale do Anari in 1988, 1994, and 1998 254
Figure 77 - Patch shape distribution for Machadinho d'Oeste including reserves in 1988,
1994, and 1998 255
Figure 78 - Patch shape distribution for Machadinho d'Oeste excluding reserves in 1988,
1994, and 1998
Figure 79 - Patch shape distribution for Vale do Anari in 1988, 1994, and 1998 257
Figure 80 - Patch fractal dimension distribution for Machadinho d'Oeste including
reserves in 1988, 1994, and 1998
Figure 81 - Patch fractal dimension distribution for Machadinho d'Oeste excluding
reserves in 1988, 1994, and 1998
Figure 82 - Patch fractal dimension distribution for Vale do Anari in 1988, 1994, and
1998
Figure 83 - Hierarchical approach defining landscape change in Machadinho d'Oeste and
Vale do Anari
Figure 84 - Conceptual approach for analyses of the human dimensions of landscape
change
Figure 85 - Timeline of selected events affecting Machadinho d'Oeste and Vale do
Anari

Figure 86 - Actors and actions in Machadinho d'Oeste and Vale do Anari...... 301

LIST OF TABLES

Table 1 - Temperature, precipitation, and wind recorded at the Jaru Biological Reserve,
Rondônia, 1977 to 1996 49
Table 2 - Vegetation formations in the State of Rondônia, Brazilian Amazon (Rondônia
1998h)
Table 3 - Farming and extraction activities in the rural areas of Machadinho d'Oeste and
Vale do Anari 55
Table 4 - Occurrence of cultivation systems within the farming systems in Machadinho
d'Oeste and Vale do Anari
Table 5 - Vegetation structural variables for initial secondary succession stands in
Machadinho d'Oeste and Vale do Anari
Table 6 - Vegetation structural variables for intermediate secondary succession stands in
Machadinho d'Oeste and Vale do Anari 101
Table 7 - Vegetation structural variables for advanced secondary succession stands in
Machadinho d'Oeste and Vale do Anari 103
Table 8 - Vegetation structural variables for tropical open forest stands in Machadinho
d'Oeste and Vale do Anari 105
Table 9 - Analysis of variance (ANOVA) for vegetation structural variables sampled in
Machadinho d'Oeste and Vale do Anari 107
Table 10 - Analysis of variance (ANOVA) for mean reflectance in Landsat TM bands
and NDVI of sites sampled in Machadinho d'Oeste and Vale do Anari 119

Table 11 - Pearson correlation coefficients for selected vegetation structure variables,
mean reflectance in TM bands, and NDVI for sites sampled in Machadinho
d'Oeste and Vale do Anari
Table 12 - LULC classification system for Machadinho d'Oeste and Vale do Anari 171
Table 13 - Accuracy assessment for LULC classifications in Machadinho d'Oeste and
Vale do Anari
Table 14 – Land Use/Land Cover in Machadinho d'Oeste and Vale do Anari in 1988,
1994, and 1998176
Table 15 - Definition of transition classes for production and secondary succession in
Machadinho d'Oeste and Vale do Anari
Table 16 - Forest reserves in Machadinho d'Oeste 187
Table 17 - LULC statistics for properties of Machadinho d'Oeste in 1988
Table 18 - LULC statistics for properties of Machadinho d'Oeste in 1994 192
Table 19 - LULC statistics for properties of Machadinho d'Oeste in 1998 193
Table 20 - LULC statistics for properties of Vale do Anari in 1988
Table 21 - LULC statistics for properties of Vale do Anari in 1994 195
Table 22 - LULC statistics for properties of Vale do Anari in 1998
Table 23 - Rates of deforestation in Machadinho d'Oeste and Vale do Anari
until 1998 197
Table 24 - Pearson correlation for selected LULC classes in farm lots of Machadinho
d'Oeste and Vale do Anari 199
Table 25 - Recoding system of LULC classes for calculation of landscape metrics in
Machadinho d'Oeste and Vale do Anari

Table 26 - List of computed metrics for patches, classes, and landscapes in Machadinho
d'Oeste and Vale do Anari
Table 27 - Computed metrics for Machadinho d'Oeste and Vale do Anari landscapes in
1988, 1994, and 1998
Table 28 - Percentage of landscape (PLAND) for each class in Machadinho d'Oeste and
Vale do Anari in 1988, 1994, and 1998 243
Table 29 - Largest Patch Index (LPI) for each class in Machadinho d'Oeste and Vale do
Anari in 1988, 1994, and 1998 243
Table 30 - Patch Density (PD) for each class in Machadinho d'Oeste and Vale do Anari
in 1988, 1994, and 1998 244
Table 31 - Mean Patch Size (MPS) for each class in Machadinho d'Oeste and Vale do
Anari in 1988, 1994, and 1998244
Table 32 - Patch Size Standard Deviation (PSSD) for each class in Machadinho d'Oeste
and Vale do Anari in 1988, 1994, and 1998
Table 33 - Patch Size Coefficient of Variation (PSCV) for each class in Machadinho
d'Oeste and Vale do Anari in 1988, 1994, and 1998 245
Table 34 - Edge Density (ED) for each class in Machadinho d'Oeste and Vale do Anari in
1988, 1994, and 1998
Table 35 - Landscape Shape Index (LSI) for each class in Machadinho d'Oeste and Vale
do Anari in 1988, 1994, and 1998246
Table 36 - Area Weighted Mean Shape Index (AWMSI) for each class in Machadinho
d'Oeste and Vale do Anari in 1988, 1994, and 1998

Table 37 - Mean Core Area Index (MCAI) for each class in Machadinho d'Oeste and
Vale do Anari in 1988, 1994, and 1998 247
Table 38 - Interspersion and Juxtaposition Index (IJI) for each class in Machadinho
d'Oeste and Vale do Anari in 1988, 1994, and 1998 248
Table 39 - Trends found for landscape metrics in Machadinho d'Oeste and Vale do Anari
between 1988 and 1998 261
Table 40 - Trends found for class metrics in Machadinho d'Oeste and Vale do Anari
between 1988 and 1998 262
Table 41 - Population in Machadinho d'Oeste and Vale do Anari
Table 42 - Distinctions and similarities between Machadinho d'Oeste and Vale do
Anari,
Table 43 - Selected findings of this dissertation

LIST OF PHOTOS

Photo 1 - Partial view of Machadinho d'Oeste (urban area)	46
Photo 2 - Partial view of Vale do Anari (urban area)	46

LIST OF APPENDIXES

Appendix 1 -	Survey protocols used during fieldwork in Machadinho d'Oeste and Vale
	do Anari
Appendix 2 -	Formulas used for the computation of metrics for landscapes, classes, and
	patches in Machadinho d'Oeste and Vale do Anari

LIST OF ACRONYMS

ACT - Anthropological Center for Training and Research on Global Environmental Change, Indiana University

CAPES - Fundação Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

(Federal Agency for Post-Graduate Education)

CIPEC - Center for the Study of Institutions, Populations, and Environmental Change, Indiana University

CEPLAC - Comissão Executiva do Plano da Lavoura Cacaueira (Executive Commission for Cacao Crop Implementation)

EMATER - Associação de Assistência Técnica e Extensão Rural do Estado de Rondônia (Rondônia State Agency for Technical Assistance and Rural Extension)

EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária (Brazilian Agricultural Research Corporation)

IBAMA - Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (Brazilian Institute of Environment and Renewable Natural Resources)

IDARON - Agência de Defesa Sanitária Agrossilvopastoril do Estado de Rondônia

(Agency for Agrosylvopastoral Sanitary Defense of the State of Rondônia)

INCRA - Instituto Nacional de Colonização e Reforma Agrária (Brazilian Agency for Colonization and Agrarian Reform)

LULC - Land use/land cover

PLANAFLORO - Plano Agropecuário e Florestal de Rondônia (Rondônia Natural Resource Management Project) POLONOROESTE - Plano Integrado de Desenvolvimento do Noroeste do Brasil (Northwestern Brazil Integration Development Program)

RO - Rondônia

SEDAM - Secretaria de Estado do Desenvolvimento Ambiental (State Office for

Environmental Development)

SPEA - School of Public and Environmental Affairs, Indiana University